

GRAPHS WHOSE EVERY TRANSITIVE ORIENTATION CONTAINS ALMOST EVERY RELATION

BY

BÉLA BOLLOBÁS[†] AND GRAHAM BRIGHTWELL

*Department of Pure Mathematics and Mathematical Statistics,
University of Cambridge, 16, Mill Lane, Cambridge, CB2 1SB, England*

ABSTRACT

Given a graph G on n vertices and a total ordering \prec of $V(G)$, the transitive orientation of G associated with \prec , denoted $P(G; \prec)$, is the partial order on $V(G)$ defined by setting $x \prec y$ in $P(G; \prec)$ if there is a path $x = x_1x_2 \cdots x_r = y$ in G such that $x_i \prec x_j$ for $1 \leq i < j \leq r$. We investigate graphs G such that every transitive orientation of G contains $\binom{n}{2} - o(n^2)$ relations. We prove that almost every $G_{n,p}$ satisfies this requirement if

$$\frac{pn \log \log \log n}{\log n \log \log n} \rightarrow \infty,$$

but almost no $G_{n,p}$ satisfies the condition if $(pn \log \log \log n)/(\log n \log \log n)$ is bounded. We also show that every graph G with n vertices and at most $cn \log n$ edges has some transitive orientation with fewer than $\binom{n}{2} - \delta(c)n^2$ relations.

The following sorting problem was proposed by Rabin (see [7]). Given n objects in some total order unknown to us, we wish to ask a set of questions, all at once, such that no matter what answers we get we can deduce all but $o(n^2)$ of the $\binom{n}{2}$ relations. How many questions will suffice? Here a *question* or *probe* is a pair (a, b) of objects, and the answer reveals whether $a \prec b$ or $b \prec a$.

As the probes have to be made simultaneously, these probes form a graph on the set of objects. Thus our problem can be reformulated as follows. Given a graph $G = (V, E)$ of order $n = |V|$ and size $e(G)$, say, consider an acyclic orientation of the edges. Let $G = (V, E)$ be the directed graph obtained in this way and let $C(G)$ be the *acyclic closure* of G : xy is an arc of $C(G)$ if G contains a directed path from x to y . As every acyclic orientation of G is induced by a

[†] Partially supported by MCS Grant 8104854.

Received November 14, 1986

total order on V , we may assume that E is induced by a total order \prec on V . The arcs of $C(G)$ define a partial order $P(G; \prec)$; we call $P(G; \prec)$ the transitive orientation of G associated with \prec .

We are interested in graphs G such that every transitive orientation of G contains many relations. Let $r(G; \prec)$ denote the number of relations in $P(G; \prec)$, and let $t(G) = \max\{\binom{n}{2} - r(G; \prec)\}$, the maximum number of relations of \prec not in $P(G; \prec)$. Obviously if $t(G) = 0$, then $G = K_n$. In this paper, we are looking for graphs G_n of order n and small size $e(G_n)$ such that $t(G_n) = o(n^2)$. Problems of this type have been studied by Bollobás and Rosenfeld [8], Häggkvist and Hell [11, 12, 13], Ajtai, Komlós and Szemerédi [2, 3], Bollobás and Thomason [9], and others, see Bollobás and Hell [7] and Bollobás [5].

After we had submitted this paper, we became aware of papers by Ajtai, Komlós, Steiger and Szemerédi [1], and by Alon, Azar and Vishkin [4] dealing with the same questions as the present paper. In both these papers results are obtained (Theorem 2 of [1] and Proposition 3.5(i) of [4]) which are essentially the same as Theorem 6 and the remark after. Also, both sets of authors prove results (Theorem 1 of [1] and Proposition 3.5(ii) of [4]) which are improved by our Theorem 1, to the extent that our result happens to disprove the Conjecture in [1]. The present authors are currently working on a paper [6] dealing with the general question of how small $t(G)$ can be for graphs G with n vertices and $pn^2/2$ edges, throughout the range of $p = p(n)$.

Before embarking on the results, we recall the concept of a random graph. Let $G_{n,p} \equiv G_p$ denote a random graph on n vertices, with each pair of vertices joined by an edge with probability $p = p(n)$, each pair considered independently. We say that *almost every* (a.e.) G_p has property Q , or that Q holds *almost surely*, if the probability that $G_{n,p}$ has Q tends to 1 as $n \rightarrow \infty$. For the general theory of random graphs, the reader is referred to Bollobás [5].

In this paper we prove that, if

$$p = \frac{\omega(n) \log n \log \log n}{n \log \log \log n}, \quad \text{where } \omega(n) \rightarrow \infty \text{ as } n \rightarrow \infty,$$

then $t(G_{n,p}) = o(n^2)$ for almost every $G_{n,p}$; whereas if

$$p \leq \frac{c \log n \log \log n}{n \log \log \log n}, \quad \text{where } c \text{ is a constant,}$$

then, for some $\delta = \delta(c) > 0$, $t(G_{n,p}) \geq \delta n^2$ for almost every $G_{n,p}$.

This latter result implies that, for every constant c , there is a constant $\delta = \delta(c) > 0$ such that almost every graph G with n vertices and at most $(cn \log n \log \log n)/(\log \log \log n)$ edges has $t(G) \geq \delta n^2$. We also show that, for every c , there is an $\varepsilon = \varepsilon(c) > 0$ such that every graph G with n vertices and $\leq cn \log n$ edges has $t(G) \geq \varepsilon n^2$.

Our first result is as follows.

THEOREM 1. *Suppose*

$$p \geq \frac{\alpha(n) \log n \log \log n}{n \log \log \log n}, \quad \text{where } 64 \leq \alpha(n) \leq \log \log n.$$

Then a.e. G_p is such that $t(G_p) \leq 4n^2/\alpha^{1/2}$.

For $\alpha(n) \rightarrow \infty$, this tells us that, if

$$\frac{pn \log \log \log n}{\log n \log \log n} \rightarrow \infty,$$

then $t(G_p)$ is almost surely $o(n^2)$. For $\alpha > 64$ a fixed constant, we interpret the theorem as saying that, if we want $P(G; <)$ to contain at least εn^2 relations ($\varepsilon > 0$) for every transitive orientation $<$ of G (i.e. $t(G) \leq \binom{n}{2} - \varepsilon n^2$), then a.e. G_p will do, for

$$p \geq \frac{\alpha \log n \log \log n}{n \log \log \log n}.$$

As mentioned earlier, weaker versions of Theorem 1 have been proved by Ajtai, Komlós, Steiger and Szemerédi [1], and by Alon, Azar and Vishkin [4]. Essentially, both sets of authors prove that, if

$$p \geq \frac{\omega(n) \log n \log \log n}{n},$$

and $\omega(n) \rightarrow \infty$, then a.e. G_p is such that $t(G_p) = o(n^2)$. In fact, Ajtai, Komlós, Steiger and Szemerédi conjecture that their result is best possible, which Theorem 1 shows to be false. The significance of our additional factor of $\log \log \log n$ is that, at any rate for random graphs, it is best possible, as we shall see in Theorem 5.

The proof of Theorem 1 divides into two parts: first we prove that, for n sufficiently large, every graph G on n vertices satisfying the properties (Q_1) to (Q_4) below has $t(G) \leq 4n^2/\alpha^{1/2}$; then we show that a.e. G_p satisfies (Q_1) to (Q_4) . Let then (Q_1) to (Q_4) be the following properties of graphs of order n .

(Q_1) There is no pair (S, D) of disjoint subsets of $V(G)$ such that

$$|S| = s = \frac{n \log \log \log n}{\alpha^{1/2} \log n}, \quad |D| = d = \frac{2s}{\alpha^{1/2}} = \frac{2n \log \log \log n}{\alpha \log n},$$

and each vertex of D sends fewer than $\log \log n$ edges to S .

(Q_2) There is no pair (U, V) of disjoint subsets of $V(G)$ such that $|U| = u \leq n/(\log n)^2$, $|V| = \frac{1}{2}u \log \log n$, and $e(U, V) > u \log \log n$.

(Q_3) There is no pair (U, V) of disjoint subsets of $V(G)$ such that

$$|U| = u \leq \frac{n \log \log \log n}{\log n \log \log n},$$

$|V| = \frac{1}{2}u \log \log \log n$, and $e(U, V) > u \log \log n$.

(Q_4) There is no pair (Y, Z) of disjoint subsets of $V(G)$ such that

$$|Y| = y = \frac{n \log \log \log n}{\log n \log \log n},$$

$|Z| = z = n/\alpha$, and there are no $Y - Z$ edges.

Here and throughout, we omit integrality signs, which do not affect the argument. For subsets X and Y of $V(G)$, $e(X, Y)$ denotes the number of edges between them. All the properties (Q_i) express the idea that large sets of vertices have about the 'right' number of edges between them.

THEOREM 2. *If G is any graph on n vertices, with n sufficiently large, satisfying (Q_1) to (Q_4) , then $t(G) \leq 4n^2/\alpha^{1/2}$.*

PROOF. Let G be a graph on n vertices satisfying (Q_1) to (Q_4) , and take any total ordering \prec of $V(G)$. We are required to prove that, provided n is sufficiently large,

$$r(G; \prec) \geq \binom{n}{2} - 4n^2/\alpha^{1/2}.$$

We may assume without loss of generality that $V[G] = [n] \equiv \{1, 2, \dots, n\}$, and that \prec is the standard order on $[n]$.

Let

$$l = \frac{\alpha^{1/2} \log n}{2 \log \log \log n}.$$

We assume for convenience that l is an integer dividing n ; it is clear that this

does not affect the argument. For $i = 1, 2, \dots, l$, define

$$A_i = \left\{ m \in \mathbb{N} : \frac{n}{l}(i-1) < m \leq \frac{ni}{l} \right\}.$$

The A_i are disjoint sets of vertices of size

$$\frac{n}{l} = \frac{2n \log \log \log n}{\alpha^{1/2} \log n}$$

satisfying $A_i < A_j$ for $i < j$. We now define inductively, for each k , a subset B_k of A_k as follows. Set $B_1 = A_1$. Given $B_k \subseteq A_k$ with

$$|B_k| > \frac{2n \log \log \log n}{\alpha^{1/2} \log n} \left(1 - \frac{1}{\alpha^{1/2}}\right) > \frac{n \log \log \log n}{\alpha^{1/2} \log n},$$

let C_{k+1} be the set of vertices in A_{k+1} sending fewer than $\log \log n$ edges to B_k . Since G satisfies (Q_1) ,

$$|C_{k+1}| < \frac{2n \log \log \log n}{\alpha \log n}.$$

Now set $B_{k+1} = A_{k+1} \setminus C_{k+1}$. We have defined sets B_k such that

$$|B_k| > \frac{2n \log \log \log n}{\alpha^{1/2} \log n} \left(1 - \frac{1}{\alpha^{1/2}}\right),$$

and each vertex of B_{k+1} sends at least $\log \log n$ edges to B_k , for all k .

There are at most $n/\alpha^{1/2}$ vertices not in $\bigcup B_k$. We claim that, for every vertex x in $\bigcup B_k$, there are fewer than $3n/\alpha^{1/2}$ vertices below x which are in $\bigcup B_k$ and are not $< x$ in $P(G; <)$. This will imply that

$$r(G; <) \geq \binom{n}{2} - \frac{n}{\alpha^{1/2}} \cdot n - n \cdot \frac{3n}{\alpha^{1/2}} = \binom{n}{2} - \frac{4n^2}{\alpha^{1/2}},$$

as desired.

Fix k and any vertex x in B_k . We may assume that

$$k \geq \frac{3 \log n}{2 \log \log \log n},$$

since otherwise there are fewer than $3n/\alpha^{1/2}$ vertices below x in $\bigcup B_k$. For $0 \leq j < k$, we define

$$D_j = \{y \in B_{k-j} : y \leq x \text{ in } P(G; <)\}.$$

We claim that $|D_j|$ always grows at essentially the expected rate.

For

$$j \leq j_0 \equiv \left\lceil \frac{\log n - 2 \log \log n}{\log \log \log n - \log 4} \right\rceil,$$

we claim that $|D_j| \geq (\frac{1}{4} \log \log n)^j$. Indeed, this is true for $j = 0$. Suppose it is true for $j - 1$, so that $|D_{j-1}| \geq (\frac{1}{4} \log \log n)^{j-1}$. Take any subset E_{j-1} of D_{j-1} with

$$|E_{j-1}| = (\frac{1}{4} \log \log n)^{j-1} \leq n/(\log n)^2.$$

There are at least $(\frac{1}{4} \log \log n)^{j-1} \log \log n$ edges from E_{j-1} to B_{k-j} , since $E_{j-1} \subseteq B_{k-j+1}$, and so, since G satisfies (Q_2) , E_{j-1} has at least $(\frac{1}{4} \log \log n)^j$ neighbours in B_{k-j} , and these are all in D_j . Therefore $|D_j| \geq (\frac{1}{4} \log \log n)^j$, as claimed. In particular, we have that $|D_{j_0}| \geq n/(\log n)^2$. From this point on, we must make do with the slower rate of growth given by (Q_3) . Repeating the above argument using (Q_3) in place of (Q_2) , we see that, for $j_0 \leq j \leq j_0 + j_1$, where

$$j_1 = \left\lceil \frac{\log \log n + \log \log \log \log n - \log \log \log n}{\log \log \log \log n - \log 2} \right\rceil,$$

we have $|D_j| \geq n/(\log n)^2 (\frac{1}{2} \log \log \log n)^{j-j_0}$.

In particular, we have

$$|D_{j_0+j_1}| \geq \frac{n \log \log \log n}{\log n \log \log n}.$$

This is now large enough so that almost every vertex below $D_{j_0+j_1}$ sends an edge to $D_{j_0+j_1}$. Indeed, since G satisfies (Q_4) , at most n/α vertices of G fail to send an edge to $D_{j_0+j_1}$. Hence

$$\begin{aligned} |\{y \in \bigcup B_k : y < x, y \not\prec x \text{ in } P(G; <)\}| &\leq \frac{n}{\alpha} + (j_0 + j_1 + 1) \frac{2n \log \log \log n}{\alpha^{1/2} \log n} \\ &\leq \frac{n}{\alpha^{1/2}} \left(\frac{1}{\alpha^{1/2}} + \frac{5}{2} + \frac{(\log \log n)^2}{\log n} \right) \\ &\leq \frac{3n}{\alpha^{1/2}}, \quad \text{for } n \text{ sufficiently large.} \end{aligned}$$

This completes the proof of Theorem 2. □

Theorem 2 goes some way towards finding graphs G_n of order n and small size satisfying $t(G_n) = o(n^2)$: all we have to do is find G_n 's satisfying (Q_1) to (Q_4) . Nevertheless such graphs G_n are not easily constructed. To complete the proof of Theorem 1, we show that, in a certain range of $p(n)$, most random graphs $G_{n,p}$ have the properties.

PROOF OF THEOREM 1. By Theorem 2, all we have to show is that a.e. G_p satisfies (Q_1) to (Q_4) . These verifications are entirely routine: in each case it suffices to calculate the expected number of pairs of subsets with the forbidden property, and show that this tends to 0 as $n \rightarrow \infty$.

(Q_1) What is the expected number E of pairs (S, D) contradicting (Q_1) ? The number of choices for S and D is at most $\binom{n}{s} \binom{n}{d}$, and the probability that a given vertex sends fewer than $\log \log n$ edges to S is

$$\sum_{k=0}^{\log \log n - 1} \binom{s}{k} p^k (1-p)^{s-k}.$$

Therefore

$$\begin{aligned} E &\leq \binom{n}{s} \binom{n}{d} \left[\sum_{k=0}^{\log \log n - 1} \binom{s}{k} p^k (1-p)^{s-k} \right]^d \\ &\leq \left(\frac{ne}{s} \right)^s \left(\frac{ne}{d} \right)^d \left[\log \log n \left(\frac{2esp}{\log \log n} \right)^{\log \log n} e^{-ps} \right]^d \\ &= \left(\frac{e\alpha^{1/2} \log n}{\log \log \log n} \right)^s \left(\frac{e\alpha \log n}{2 \log \log \log n} \right)^{2s/\alpha^{1/2}} \\ &\quad \times [\log \log n (2e\alpha^{1/2})^{\log \log n} e^{-\alpha^{1/2} \log \log n}]^{2s/\alpha^{1/2}} \\ &= \exp \left\{ s \left[\log \log n (1 + o(1)) + \frac{2}{\alpha^{1/2}} \log \log n (1 + o(1)) \right. \right. \\ &\quad \left. \left. + \frac{2}{\alpha^{1/2}} \log \log n \log (2e\alpha^{1/2}) (1 + o(1)) - 2 \log \log n \right] \right\} \\ &= \exp \left\{ 2s \log \log n \left[\frac{1}{\alpha^{1/2}} (1 + \log(2e\alpha^{1/2})) - 1 \right] (1 + o(1)) \right\} \\ &\rightarrow 0 \quad \text{as } n \rightarrow \infty. \end{aligned}$$

Therefore a.e. G_p contains no such pair.

(Q₂) For fixed u , what is E_u , the expected number of pairs (U, V) with $|U| = u$ contradicting (Q₂)? The number of choices for U and V is at most

$$\binom{n}{u} \binom{n}{\frac{1}{4}u \log \log n};$$

we can choose the $u \log \log n$ edge from U to V in

$$\left(\frac{\frac{1}{4}u^2 \log \log n}{u \log \log n} \right)$$

ways, and the probability that all these edges are in G_p is $p^{u \log \log n}$. Therefore

$$\begin{aligned} E_u &\leq \binom{n}{u} \binom{n}{\frac{1}{4}u \log \log n} \left(\frac{\frac{1}{4}u^2 \log \log n}{u \log \log n} \right) p^{u \log \log n} \\ &\leq \left(\frac{en}{u} \right)^u \left(\frac{4en}{u \log \log n} \right)^{\frac{1}{4}u \log \log n} \left(\frac{eup}{4} \right)^{\log \log n} \\ &\equiv F_u; \end{aligned}$$

$$\begin{aligned} \frac{F_u}{F_{u-1}} &= \left(\frac{en}{u} \right) \left(\frac{4en}{u \log \log n} \right)^{\frac{1}{4} \log \log n} \left(\frac{eup}{4} \right)^{\log \log n} \left(1 + \frac{1}{u-1} \right)^{(u-1)(1-\frac{3}{4} \log \log n)} \\ &\leq \exp \left\{ \log \left(\frac{en}{u} \right) + \frac{\log \log n}{4} \log \left(\frac{4en}{u \log \log n} \right) \right. \\ &\quad \left. + \log \log n \log \left(\frac{eup}{4} \right)^{\log \log n} - \frac{1}{2} \log \log n \right\} \\ &< 1 \quad \text{if } \frac{1}{4} \log \left(\frac{4en}{u \log \log n} \right) < \log \left(\frac{4n \log \log \log n}{eup} \right), \end{aligned}$$

which holds if $u \leq n/(\log n)^2$. So the expected number of pairs (U, V) with the given properties is

$$\begin{aligned} \sum_{u=1}^{n/(\log n)^2} E_u &\leq \frac{n}{(\log n)^2} F_1 \\ &\leq \frac{en^2}{(\log n)^2} \left(\frac{4en}{\log \log n} \right)^{\frac{1}{4} \log \log n} \left(\frac{e \alpha \log n \log \log n}{4n \log \log \log n} \right)^{\log \log n} \\ &\rightarrow 0 \quad \text{as } n \rightarrow \infty. \end{aligned}$$

Hence almost no G_p contains such a pair (U, V) .

(Q_3) The argument here is the same as for (Q_2), and we omit some details. For fixed u , the expected number of such pairs is at most

$$\begin{aligned}
 & \binom{n}{u} \binom{n}{\frac{1}{2}u \log \log \log n} \left(\frac{\frac{1}{2}u^2 \log \log \log n}{u \log \log n} \right) p^{u \log \log n} \\
 & \leq \left(\frac{en}{u} \right)^{\frac{1}{2}u \log \log \log n} \left(\frac{eu\alpha \log n}{2n} \right)^{u \log \log n} \\
 & \equiv G_u; \\
 \frac{G_u}{G_{u-1}} & = \left(\frac{en}{u} \right)^{\frac{1}{2} \log \log \log n} \left(\frac{eu\alpha \log n}{2n} \right)^{\log \log n} \left(1 + \frac{1}{u-1} \right)^{(u-1)\frac{1}{2} \log \log \log n - \log \log n}
 \end{aligned}$$

which is less than 1 if

$$u \leq \frac{n \log \log \log n}{\log n \log \log n}.$$

So the expected number of pairs (U, V) is at most

$$\begin{aligned}
 \frac{n \log \log \log n}{\log n \log \log n} G_1 & = \exp \{ \log n (1 + o(1)) + \frac{1}{2} \log \log \log n \log n (1 + o(1)) \\
 & \quad - \log \log n \log n (1 + o(1)) \}
 \end{aligned}$$

which tends to 0 as $n \rightarrow \infty$.

(Q_4) The expected number of such pairs (Y, Z) is at most

$$\begin{aligned}
 \binom{n}{y} \binom{n}{z} (1-p)^{yz} & \leq (\log n)^{2n/\log n} (e\alpha)^{n/\alpha} e^{-n/2} \\
 & \rightarrow 0 \quad \text{as } n \rightarrow \infty.
 \end{aligned}$$

This completes the proof. □

We next prove that, if $(pn \log \log \log n)/(\log n \log \log n)$ is bounded above, the $t(G_p)$ is almost surely at least εn^2 , for some $\varepsilon > 0$. In fact, we prove a somewhat stronger result, which shows that $t(G) > \varepsilon n^2$ for other classes of graphs G , with about the same number of edges, which are far from random.

THEOREM 3. *Let $\varepsilon > 0$, $a_1, a_2, b \geq 0$ be fixed constants. Suppose (for convenience) that $b(a_1 + a_2) \geq 1$. Suppose that $|G| = n$, and that there is a subset*

Y of $V(G)$ with order $\geq en$ such that $\Delta(G[Y]) \leq \log n(\log \log n)^{a_1}$, and furthermore there is a partition of Y into

$$s \leq \frac{b \log n}{\log \log \log n}$$

classes Z_1, Z_2, \dots, Z_s such that, for each k , no component of $G[Z_k]$ has order greater than $(\log \log n)^{a_2}$. Then

$$t(G) \geq \frac{\varepsilon^2}{2b^2(a_1 + a_2)^2} n^2 + o(n^2).$$

Here $G[Z]$, for $Z \subseteq V(G)$, denotes the induced subgraph of G with vertex set Z , and $\Delta(H)$ denotes the maximal degree of a graph H .

Before proving Theorem 3, let us see how it can be used. First we note some simpler conditions implying the conditions of Theorem 3.

THEOREM 4. Suppose $|G| = n$, $e(G) \leq n \log n(\log \log n)^{c_1}$, and $\chi(G)$, the chromatic number of G , is at most $(c_2 \log n)/(\log \log \log n)$, where c_1 and c_2 are constants with $c_1 c_2 \geq 1$. Let η be any positive real number. Then

$$t(G) \geq \frac{(1 - \eta)}{2c_1^2 c_2^2} n^2,$$

provided n is sufficiently large.

PROOF. At most $\eta n/4$ vertices of G have degree greater than $\log n(\log \log n)^{c_1(1 + \eta/4)}$, for n sufficiently large. Let Y be the set obtained by deleting these vertices from $V(G)$. Take a colouring of $G[Y]$ using

$$s \leq \frac{c_2 \log n}{\log \log \log n}$$

colours, and call the colour classes Z_1, \dots, Z_s . Then G , Y , (Z_i) satisfy the conditions of Theorem 3 with $\varepsilon = 1 - \eta/4$, $a_1 = c_1(1 + \eta/4)$, $a_2 = 0$, and $b = c_2$. Hence the result follows. \square

THEOREM 5. Let $c \geq 1$ be a constant, and suppose that

$$p \leq \frac{c \log n \log \log n}{n \log \log \log n}.$$

Then for a.e. G_p ,

$$t(G_p) \geq \frac{(1-\delta)}{2c^2} n^2, \quad \text{for any } \delta > 0.$$

PROOF. Certainly almost every G_p has at most $n \log n \log \log n$ edges, and by a result of Bollobás and Thomason [10] (see Chapter XI, Theorem 25, of Bollobás [5]), $\chi(G_p)$ is almost surely less than $((1 + \delta/3)c \log n)/(\log \log \log n)$. Hence, by Theorem 4 with $c_1 = 1$, $c_2 = (1 + \delta/3)c$ and $\eta = \delta/3$, we have

$$t(G_p) \geq \frac{(1-\delta)}{2c^2} n^2,$$

almost surely, as required. \square

Theorem 4 says that, if the chromatic number of G is small, then $t(G) \geq \varepsilon n^2$. For random graphs, $\chi(G_p)$ is almost surely small enough, if $(pn \log \log \log n)/(\log n \log \log n)$ is bounded. If we are to produce graphs G with $(cn \log n \log \log n)/(\log \log \log n)$ edges such that $t(G) = o(n^2)$, we have to increase the chromatic number. One way to artificially increase $\chi(G)$ is to partition our n -set into sets of $(c \log n \log \log n)/(\log \log \log n)$ vertices, let each set span a complete graph, and add the edges of a random $G_{n,p}$, with

$$p = \frac{c \log n \log \log n}{n \log \log n}.$$

Denote the resulting random graph H_p . In fact, Theorem 3 implies that, in this case also, we almost surely have $t(H_p) \geq \varepsilon n^2$.

We merely sketch the proof of this assertion. The random part of the graph almost surely has chromatic number at most $(2c \log n)/(\log \log \log n)$, and what is more we can take the colour classes each to have order at most $(n \log \log \log n)/(c \log n)$. Consider the various intersections of colour classes with complete graphs. Almost surely none of these intersections contains as many as $\log n$ vertices, and at most $n/(\log n)^2$ of them contain as many as $(\log \log n)^2$. Hence, by deleting at most $n/\log n$ vertices, we obtain a subset Y of $V(G)$, and subsets (Z_i) (the colour classes) satisfying the conditions of Theorem 3 with $a_1 = 1$, $b = 2c$, and $a_2 = 2$. Therefore $t(H_p)$ is almost surely at least εn^2 , for some $\varepsilon > 0$.

To find a graph with $(cn \log n \log \log n)/(\log \log \log n)$ edges and $t(G) = o(n^2)$, we seem to need a graph with high chromatic number and yet good “spreading” properties.

Having seen how Theorem 3 can be applied, let us prove it.

PROOF OF THEOREM 3. Let δ be any positive constant, and set $b_0 = 1/(a_1 + a_2 + \delta)$, and

$$s_0 = \frac{b_0 \log n}{\log \log \log n}.$$

Without loss of generality the s_0 largest Z_i 's are Z_1, \dots, Z_{s_0} . Let $Y_0 = \bigcup_{i=1}^{s_0} Z_i$, and note that

$$|Y_0| \geq \frac{\epsilon b_0}{b} n.$$

We give each class Z_i ($1 \leq i \leq s_0$) a fixed ordering \prec_i of its vertices, and consider orderings of $V(G)$ of the following form. Those vertices not in Y_0 are put at the top; the classes Z_1, \dots, Z_{s_0} are taken in some order, and then the Z_i are placed in that order below $V(G) \setminus Y_0$, the vertices of Z_i appearing in the given order \prec_i . We claim that, in one of the $s_0!$ orderings \prec of this form, there are $o(n^2)$ relations in $\prec|_{Y_0}$. What is more, if each permutation of Z_1, \dots, Z_{s_0} is given equal probability, we claim that the expected number of relations in $\prec|_{Y_0}$ is at most $n^{2-\delta/2(a_1 + a_2 + \delta)}$.

Which paths in $G[Y_0]$ can be chains in such an ordering \prec ? The only possibilities are those paths of the form $x_{11} \dots x_{1j_1} x_{21} \dots x_{2j_2} \dots x_{k1} \dots x_{kj_k}$, where $x_{ij} \dots x_{ij_i}$ is a chain in some $(Z_i; \prec_i)$ for every i , and $k \leq s_0$. Call such a path a *k-step candidate path*. Call two candidate paths *equivalent* if they have the same $x_{11}, x_{1j_1}, x_{21}, x_{2j_2}, \dots, x_{k1}, x_{kj_k}$. (Thus equivalent paths differ only inside each Z_i .) Clearly a candidate path P is a chain in \prec iff every path equivalent to P is a chain in \prec iff every path equivalent to P is a chain in \prec . Therefore, if we are to count relations in $\prec|_{Y_0}$, we need only count once for each equivalence class.

How many equivalence classes of *k-step candidate paths* are there? We have $|Y_0|$ choices for x_{11} . Given x_{11} , we choose x_{1j_1} from the $\leq (\log \log n)^{a_2}$ vertices in the same component of $G[Z_i]$ as x_{11} . Given x_{1j_1} , we choose $x_{i+1,1}$ from the neighbours of x_{1j_1} in Y_0 , and there are at most $\log n (\log \log n)^{a_1}$ of these. Therefore the number of equivalence classes of *k-step candidate paths* is at most

$$|Y_0| (\log \log n)^{ka_2} [\log n (\log \log n)^{a_1}]^{k-1}.$$

The probability that a given *k-step candidate path* is a chain in \prec is just $1/k!$, the probability that the k classes Z_{l_1}, \dots, Z_{l_k} are in the right order in \prec . Therefore the expected number of relations in $\prec|_{Y_0}$ is at most

$$\begin{aligned}
& \sum_{k=1}^{s_0} |Y_0| (\log n (\log \log n)^{a_1 + a_2})^k \frac{1}{k!} \\
& \leq \frac{\varepsilon b_0}{b} n \frac{b_0 \log n}{\log \log \log n} (eb_0 \log \log \log n (\log \log n)^{a_1 + a_2})^{b_0 \log n / \log \log \log n} \\
& = \exp \left\{ \log \left(\frac{\varepsilon b_0^2 \log n}{b \log \log \log n} \right) + \log n \right. \\
& \quad \left. + \frac{\log n}{(a_1 + a_2 + \delta) \log \log \log n} ((a_1 + a_2) \log \log \log n + \log (eb_0 \log \log \log n)) \right\} \\
& = \exp \left\{ \log n \left(2 - \frac{\delta}{a_1 + a_2 + \delta} \right) + o(\log n) \right\} \\
& \leq n^{2 - \frac{1}{2} \delta / (a_1 + a_2 + \delta)}.
\end{aligned}$$

Therefore the expected value of $r(G; <)$ is at most

$$\binom{n}{2} - \binom{|Y_0|}{2} + n^{2 - \delta / 2(a_1 + a_2 + \delta)},$$

and so

$$t(G) \geq \frac{\varepsilon^2 b_0^2}{2b^2} n^2 + o(n^2) = \frac{\varepsilon^2}{2b^2(a_1 + a_2 + \delta)^2} n^2 + o(n^2).$$

Since δ was arbitrary,

$$t(G) \geq \frac{\varepsilon^2}{2b^2(a_1 + a_2)^2} n^2 + o(n^2),$$

as required. \square

Let us now see that, if we restrict the number of edges of G somewhat further than we do in Theorem 5, then *every* G has $t(G) \geq \varepsilon n^2$. Using a somewhat different technique, Alon, Azar, and Vishkin [4] have proved the same result (with a worse constant).

THEOREM 6. *Let c be a constant, and suppose that $|G| = n$ and $e(G) \leq \frac{1}{2}cn \log n$. If n is sufficiently large, then*

$$t(G) \geq n^2 \left(\frac{2}{3c + 5} \right).$$

To prove instead that, say,

$$t(G) \geq n^2 \left(\frac{1}{8c} - \frac{1}{128c^2} \right)$$

is fairly simple. We first remove all vertices (at most $n/2$) of degree $\geq 2c \log n$. Then we take a random ordering \prec of the remaining vertices, and calculate the expected number of chains which span at most δn vertices (i.e. the expected number of chains $x_1 \dots x_k$ with at most δn vertices between x_1 and x_k in \prec), where $\delta = 1/8c$. This is easily seen to be $o(n^2)$. The proof of Theorem 6 is a refinement of this proof. We omit the arithmetical details.

PROOF. Given a graph G with $|G| = n$, and $e(G) \leq \frac{1}{2}cn \log n$, we define inductively a sequence (G_r) of induced subgraphs of G as follows. Set $G_1 = G$. Suppose that G_r has $n - r + 1$ vertices and $\frac{1}{2}c_r(n - r + 1)\log(n - r + 1)$ edges. If G_r has a vertex of degree $> (\frac{3}{2}c_r + \frac{7}{4})\log(n - r + 1)$, form G_{r+1} by deleting any such vertex. In this case, set

$$c_{r+1} = \frac{2e(G_{r+1})}{(n - r)\log(n - r)}.$$

So G_{r+1} has $n - r$ vertices and $\frac{1}{2}c_r(n - r)\log(n - r)$ edges. If, on the other hand,

$$\Delta(G_r) \leq \left(\frac{3c_r}{2} + \frac{7}{4} \right) \log(n - r + 1),$$

stop the process.

Let G_0 be the final graph G_r , set $n_0 = |G_0|$, and define c_0 by $e(G_0) = \frac{1}{2}c_0n_0 \log n_0$. We shall prove that

$$t(G_0) \geq n_0^2 \left(\frac{2}{3c_0 + 5} \right) \geq n^2 \left(\frac{2}{3c + 5} \right),$$

and therefore

$$t(G) \geq n^2 \left(\frac{2}{3c + 5} \right),$$

since we can put the vertices of $G \setminus G_0$ at the top of the ordering.

It is straightforward to check that, provided $n - r \geq e^{6c_r}$, we have

$$(n - r)^2 \left(\frac{2}{3c_{r+1} + 5} \right) > (n - r + 1)^2 \left(\frac{2}{3c_r + 5} \right),$$

and thus, for every $r \leq n - e^{6c_r}$,

$$(n-r)^2 \left(\frac{2}{3c_{r+1} + 5} \right) > n^2 \left(\frac{2}{3c + 5} \right).$$

In particular, we see that n_0 is at least $n(5/(3c + 5))^{1/2}$, and so, provided n is sufficiently large,

$$n_0^2 \left(\frac{2}{3c_0 + 5} \right) > n^2 \left(\frac{2}{3c + 5} \right).$$

We now show that, provided n_0 is sufficiently large,

$$t(G_0) \geq n_0^2 \left(\frac{2}{3c_0 + 5} \right).$$

We recall that

$$\Delta(G_0) \leq \left(\frac{3c_0}{2} + \frac{7}{4} \right) \log n_0.$$

Set

$$\varepsilon = \left(\frac{3c_0}{2} + \frac{9}{5} \right)^{-1},$$

and note that

$$\varepsilon \left(\frac{3c_0}{2} + \frac{7}{4} \right) < 1 - \frac{1}{30c + 36}.$$

The number of paths of length k in G_0 is at most $n_0[(\frac{3}{2}c_0 + \frac{7}{4}) \log n_0]^k$. If we take a random ordering \prec of the vertices of G_0 , with each ordering equally likely, the probability that the vertices of a given path $L = x_1 x_2 \cdots x_{k+1}$ of length k appear in the order given by L , and are all no more than εn_0 higher than x_1 (i.e. $x_1 \prec x_2 \prec \cdots \prec x_{k+1}$, and there are at most $\varepsilon n_0 - 1$ vertices y with $x_1 \prec y \prec x_{k+1}$) is at most $\varepsilon^k/k!$. Hence the expected number of chains of length k in $(G_0; \prec)$ spanning at most εn_0 vertices is at most

$$n_0 \left[\left(\frac{3c_0}{2} + \frac{7}{4} \right) \log n_0 \right]^k \varepsilon^k/k! \leq n_0 \left[\left(1 - \frac{1}{30c + 36} \right) \log n_0 \right]^k \frac{1}{k!}.$$

This expression is maximised when

$$k = \left(1 - \frac{1}{30c + 36} \right) \log n_0,$$

and it is less than 1 when $k \geq 4 \log n_0$. Therefore the expected number of chains in $(G_0; <)$ spanning at most εn_0 vertices is at most

$$\begin{aligned} & \sum_{k=1}^{\varepsilon n_0} n_0 \left[\left(1 - \frac{1}{30c + 36} \right) \log n_0 \right]^k \frac{1}{k!} \\ & \leq \varepsilon n_0 + 4 \log n_0 n_0 \exp \left[\left(1 - \frac{1}{30c + 36} \right) \log n_0 \right] \\ & \leq n_0^{2-(30c+37)^{-1}}, \end{aligned}$$

for sufficiently large n_0 .

In $(G_0; <)$, there are $\varepsilon n_0^2 - \frac{1}{2} \varepsilon^2 n_0^2$ pairs of vertices at most εn_0 apart in $<$ and, in some ordering $<$, at most $n_0^{2-(30c+37)^{-1}}$ of these pairs are related in $P(G_0; <)$. Hence

$$t(G_0) \geq \varepsilon n_0^2 - \frac{1}{2} \varepsilon^2 n_0^2 - n_0^{2-(30c+37)^{-1}}.$$

It is straightforward to check that

$$\varepsilon - \frac{1}{2} \varepsilon^2 > \frac{2}{3c_0 + 5},$$

and hence

$$t(G_0) \geq n_0^2 \left(\frac{2}{3c_0 + 5} \right).$$

This completes the proof. □

If G is close to regular, the expected number of relations missing in a randomly chosen ordering $<$ is almost exactly $n^2(1/c - 1/2c^2)$, so Theorem 6 is almost the best result that any such “averaging” argument can give. However, the method involved is still fairly crude, and we make no attempt to choose a “good” ordering, beyond putting all vertices of high degree at the top.

For small c , one can prove a stronger result: if G is a graph with n vertices and fewer than $\frac{1}{2}cn \log n$ edges, then $t(G) \geq \frac{1}{2}n^2(1 - c/2)^2(1 - \varepsilon)$, for any positive ε and n sufficiently large.

Theorem 5 implies (see Chapter II, Theorem 2 of Bollobás [5]) that *almost every* graph G with n vertices and at most $(cn \log n \log \log n)/(\log \log \log n)$ edges has $t(G) \geq \delta(c)n^2$. Theorem 6 says that *every* graph G with n vertices and at most $cn \log n$ edges has $t(G) \geq \varepsilon(c)n^2$. This suggests the following question. Is there a function $\omega(n) \rightarrow \infty$ such that every G with n vertices and at most

$\omega(n)n \log n$ edges has $t(G) \geq \varepsilon n^2$, for some fixed positive ε ? Theorem 1 implies that such a function $\omega(n)$ must be such that $(\omega(n) \log \log \log n)/(\log \log n)$ is bounded. We conjecture that there is such an $\omega(n)$, and furthermore that we can take

$$\omega(n) = \frac{c \log \log n}{\log \log \log n}.$$

CONJECTURE. *Every graph with n vertices and at most*

$$(cn \log n \log \log n)/(\log \log \log n)$$

edges has $t(G) \geq \delta(c)n^2$, for some $\delta(c) > 0$.

REFERENCES

1. M. Ajtai, J. Komlós, W. Steiger and E. Szemerédi, *Almost sorting in one round*, preprint.
2. M. Ajtai, J. Komlós and E. Szemerédi, *An $O(n \log n)$ sorting network*, ACM Symposium on Theory of Computing **15** (1983), 1–9.
3. M. Ajtai, J. Komlós and E. Szemerédi, *Sorting in $c \log n$ parallel steps*, Combinatorica **3** (1983), 1–19.
4. N. Alon, Y. Azar and U. Vishkin, *Tight complexity bounds for parallel comparison sorting*, Proc. 27th Annual Symp. on Foundations of Computer Science, Toronto, IEEE, 1986, pp. 502–510.
5. B. Bollobás, *Random Graphs*, Academic Press, London, 1985, xv + 447pp.
6. B. Bollobás and G. Brightwell, *Transitive orientations of graphs*, submitted.
7. B. Bollobás and P. Hell, *Sorting and graphs*, in *Graphs and Order* (I. Rival, ed.), NATO ASI Series, Reidel, Dordrecht, Boston, Lancaster, 1984, pp. 169–184.
8. B. Bollobás and M. Rosenfeld, *Sorting in one round*, Isr. J. Math. **38** (1981), 154–160.
9. B. Bollobás and A. Thomason, *Parallel sorting*, Discrete Appl. Math. **6** (1983), 1–11.
10. B. Bollobás and A. G. Thomason, *Random graphs of small order*, in *Random Graphs*, Ann Discrete Math. (1985), 47–97.
11. R. Häggkvist and P. Hell, *Graphs and parallel comparison algorithms*, Congr. Num. **29** (1980), 497–509.
12. R. Häggkvist and P. Hell, *Parallel sorting with constant time for comparisons*, SIAM J. Comput. **10** (1981), 465–472.
13. R. Häggkvist and P. Hell, *Sorting and merging in rounds*, SIAM J. Alg. Discrete Methods **3** (1982), 465–473.