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ABSTRACT 

Given a graph G onn vertices and a total ordering < of V(G), the transitive 
orientation of G associated with < ,  denoted P(G; < ), is the partial order on 
V(G) defined by setting x < y in P(G; < ) if  there is a path x = xlx2. • • xr = Y 
in G such that x~ < x~ for 1 _-< i < j  _-< r. We investigate graphs G such that 
every transitive orientation of G contains (~) - o(n 2) relations. We prove that 
almost every Gn,p satisfies this requirement if 

Ion log log log n 
log n log log n oo, 

but almost no G,.p satisfies the condition if(ion log log log n)/(log n log log n) 
is bounded. We also show that  every graph G with n vertices and at most 
cn log n edges has some transitive orientation with fewer than ( ~ ) -  c~(c)n 2 
relations. 

The following sorting problem was proposed by Rabin (see [7]). Given n 

objects in some total order unknown to us, we wish to ask a set of questions, all 

at once, such that no matter what answers we get we can deduce all but o(n 2) of 

the (I) relations. How many questions will suffice? Here a question or probe is a 

pair (a, b) of objects, and the answer reveals whether a < b or b < a. 

As the probes have to be made simultaneously, these probes form a graph on 

the set of objects. Thus our problem can be reformulated as follows. Given a 

graph G = (V, E) of order n = ] G ] and size e(G), say, consider an acyclic 

orientation of the edges. Let G = (V, E) be the directed graph obtained in this 

way and let C(G) be the acyclic closure of G: xy is an arc of C(G) if G contains a 

directed path from x to y. As every acyclic orientation of G is induced by a 
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total order on V, we may assume that E is induced by a total order < on V. 

The arcs of  C(G) define a partial order P(G; < ); we call P(G; < ) the transitive 

orientation of G associated with < .  
We are interested in graphs G such that every transitive orientation of  G 

contains many relations. Let r(G; < ) denote the number of  relations in 

P(G; < ), and let t(G) = max((~') - r(G; < )}, the maximum number of  rela- 

tions of < not in P(G; < ). Obviously i f t (G)  = 0, then G = Kn. In this paper, 

we are looking for graphs Gn of order n and small size e(G,) such that 

t(G,) = o(n2). Problems of  this type have been studied by Bollob~is and 

Rosenfeld [8], H/iggkvist and Hell [11, 12, 13], Ajtai, Koml6s and Szemer6di 

[2, 3], Bollob~is and Thomason [9], and others, see Bollob~is and Hell [7] and 

Bollob~is [5]. 

After we had submitted this paper, we became aware of  papers by Ajtai, 

Koml6s, Steiger and Szemer6di [ 1 ], and by Alon, Azar and Vishkin [4] dealing 

with the same questions as the present paper. In both these papers results are 

obtained (Theorem 2 o f [ l ]  and Proposition 3.5(i) of  [4]) which are essentially 

the same as Theorem 6 and the remark after. Also, both sets of authors prove 

results (Theorem 1 of [ l ]  and Proposition 3.5(ii) of  [4]) which are improved by 

our Theorem 1, to the extent that our result happens to disprove the Conjec- 

ture in [1]. The present authors are currently working on a paper [6] dealing 
with the general question of  how small t(G) can be for graphs G with n vertices 

and pn2/2 edges, throughout the range o f p  = p(n). 
Before embarking on the results, we recall the concept of  a random graph. 

Let G,,p ~ Gp denote a random graph on n vertices, with each pair of  vertices 

joined by an edge with probability p = p(n), each pair considered indepen- 

dently. We say that almost every (a.e.) Gp has property Q, or that Q holds 

almost surely, if the probability that G,,p has Q tends to 1 as n ~ ~z. For the 

general theory of  random graphs, the reader is referred to Bollob~is [5]. 
In this paper we prove that, if 

og(n)log n log log n 
p - , where og(n)--- oo as n --* ~ ,  

n log log log n 

then t(G,,p) = o(n 2) for almost every G,,p; whereas if 

c log n log log n 
p < , where c is a constant, 

n log log log n 

then, for some ~ = f i ( c ) > 0 ,  t(Gn,p)>~n 2 for almost every Gn,p. 



114 B. BOLLOBAS AND G. BRIGHTWELL Isr. J. Math. 

This latter result implies that, for every constant c, there is a constant 
= J ( c ) >  0 such that almost every graph G with n vertices and at most 

(cn log n log log n)/(log log log n) edges has t(G) > ~n 2. We also show that, for 

every c, there is an e = e(c) > 0 such that every graph G with n vertices and 
< cn log n edges has t(G) > en 2. 

Our first result is as follows. 

THEOREM 1. Suppose 

t~(n)log n log log n 
p => , where 64 =< a(n) <-_ log log n. 

n log log log n 

Then a.e.  Gp is such that t(Gp) <= 4nE/a ~/2. 

For a(n ) - "  ~ ,  this tells us that, if 

pn log log log n 
"-'~ O 0 ,  

log n log log n 

then t(Gp) is almost surely o(n2) .  For a > 64 a fixed constant, we interpret the 
theorem as saying that, if we want P(G; < ) to contain at least en 2 relations 
(e > 0) for every transitive orientation < of G (i.e. t(G) <= (~) - en2), then a.e. 

Gp will do, for 

a log n log log n p >  
n log log log n 

As mentioned earlier, weaker versions of Theorem 1 have been proved by 

Ajtai, Koml6s, Steiger and Szemer6di [ l ], and by AIon, Azar and Vishkin [4]. 

Essentially, both sets of  authors prove that, if 

to(n)log n log log n 
p>_- 

n 

and t o ( n ) ~  oo, then a.e. Gp is such that t(Gp) = 0(02) .  In fact, Ajtai, Koml6s, 

Steiger and Szemer6di conjecture that their result is best possible, which 

Theorem 1 shows to be false. The significance of our additional factor of 

log log log n is that, at any rate for random graphs, it is best possible, as we shall 

see in Theorem 5. 
The proof of Theorem 1 divides into two parts: first we prove that, for n 

sufficiently large, every graph G on n vertices satisfying the properties (QI) to 
(Q4) below has t(G) <= 4hE~all2; then we show that a.e. Gp satisfies (Ql) to (Q4). 

Let then (Qt) to (Q4) be the following properties of graphs of order n. 
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(Q0 There is no pair (S, D) of disjoint subsets of  V(G) such that 

n log log log n 2s 
I S I  = s =  al/21og n , I D I =d----all2= 

2n log log log n 

a log n 

and each vertex of D sends fewer than log log n edges to S. 

(Q2) There is no pair (U, V) of disjoint subsets of  V(G) such that I U I = 
u < n/(log n) 1, I V I = ~u log log n, and e(U, V) > u log log n. 

(Q3) There is no pair (U, V) of disjoint subsets of  V(G) such that 

n log log log n 
IUI  =u___< 

log n log log n '  

I V I = ~u log log tog n, and e(U, V) > u log log n. 

(Q4) There is no pair (Y, Z) of disjoint subsets of  V(G) such that 

I r l  = y =  
n log log log n 

log n log log n '  

] Z [ = z = n/a, and there are no Y - Z edges. 

Here and throughout, we omit integrality signs, which do not affect the 

argument. For subsets X and Y of V(G), e(X, Y) denotes the number of edges 
between them. All the properties (Qi) express the idea that large sets of  vertices 

have about the 'right' number of edges between them. 

THEOREM 2. I f  G is any graph on n vertices, with n sufficiently large, 
satisfying (QO to (04), then t(G) <= 4nZla t/z. 

PROOF. Let G be a graph on n vertices satisfying (Q0 to (Q4), and take any 
of V(G). We are required to prove that, provided n is total ordering < 

sufficiently large, 

r ( G ; <  )>=(~)-4nZ/a ~/2. 

We may assume without loss of generality that V[G] = [ n ] ~  (1, 2 , . . . ,  n }, 

and that < is the standard order on [n]. 

Let 

a t/2 log n 
l =  

2 log log log n" 

We assume for convenience that l is an integer dividing n; it is clear that this 
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does not affect the argument. For i = 1, 2 . . . . .  l, define 

Ai={m~N: n(i l ) < m < / }  
l 

The Ai are disjoint sets of  vertices of  size 

n 2n log log log n 

-/  - -  ot 1/2 log n 

satisfying Ai < Aj for i < j .  We now define inductively, for each k, a subset Bk 

Of Ak as follows. Set B1 =At .  Given Bk C_ Ak with 

IBkl > 
2n o, lo, lo, (l --5') 

a ~/2 log n 

n log log log n 

C~ 1/2 log n 

let Ck + t be the set of vertices in A k + t sending fewer than log log n edges to Bk. 

Since G satisfies (Q0, 

2n log log log n 
I G + ,  I < 

a log n 

Now set Bk +, = Ak + t \ Ck + i. We have defined sets Bk such that 

2n log log log n (1 - 1 )  
] Ok [ ~> Ot 1;2 log n ~ ' 

and each vertex of B k + i sends at least log log n edges to Bk, for all k. 
There are at most rl/a u2 vertices not in U B  k. We claim that, for every vertex 

x in U B k ,  there are fewer than 3 n / a  u2 vertices below x which are in U B k  and 

are not < x  in P ( G ;  < ). This will imply that 

n 
r( G ; < ) >= - - ~  . n - n a 112 a112, 

as desired. 

Fix k and any vertex x in B k. We may assume that 

3 log n 
k>__ 

2 log log log n 

since otherwise there are fewer than 3 n / a  1/2 vertices below x in UBk. For 

0 _-< j < k, we define 

Dj = ( Y ~ B k - j :  Y <=x in  P ( G ;  < )}. 
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We claim that 
For 

I Dj I always grows at essentially the expected rate. 

[ log_n ~_2 l_.og log.n. ] 
J =<Jo= Hog log log n -- log 4 / '  

we claim that I Dj [ > (¼ log log n) j. Indeed, this is true forj  = 0. Suppose it is 
true forj  - 1, so that [ Dj_ ~ [ > (¼ log log n)J- 1. Take any subset Ej_ t ofDj_ i 
with 

I Ej_~ I =(¼10glogn) s-I =< n/(logn) 2. 

There are at least (~ log log n) s-~ log log n edges from Ej-1 to Bk-j ,  since 
Ej_~ C_ Bk-j+~, and so, since G satisfies (Q2), Ej_~ has at least (¼ log log n) j 
neighbours in Bk-j, and these are all in Dj. Therefore [ Dj I >-- (¼ log log n) j, as 
claimed. In particular, we have that I Dj0 I ->- n/(log n) 2. From this point on, 
we must make do with the slower rate of growth given by (Q~). Repeating the 
above argument using (Q3) in place of (Q2), we see that, for Jo < J  --<Jo +Jl, 
where 

= [log log n + log log log log n -- log log log n] 
J, / log log log log n -- log 2 ] 

we have ]/)1- ] >_- n/(log n)2(½ log log log n) j-jo. 
In particular, we have 

I Djo+J, I 
n log log log n 

log n log log n 

This is now large enough so that almost every vertex below Dj0+j, sends an edge 
to Dj0+j,. Indeed, since G satisfies (Q4), at most n/a vertices of G fail to send an 
edge to Djo+j,. Hence 

[ {y~  LJBk:y < x, y4~x in P(G; < )) [ < n +  (j0 + j l  + 1) 
0/ 

2n log log log n 
a '/2 log n 

< n ( 1  5 

3 n  

= o/112 , 

(log log n) 2] 
) 

for n sufficiently large• 

This completes the proof of Theorem 2. D 
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Theorem 2 goes some way towards finding graphs G, of order n and small 
size satisfying t(G,) = o(n2): all we have to do is find G,'s satisfying (Q0 to 
(Q4). Nevertheless such graphs G, are not easily constructed. To complete the 
proof of Theorem 1, we show that, in a certain range ofp(n), most random 
graphs G,,p have the properties. 

PROOF OF THEOREM 1. By Theorem 2, all we have to show is that a.e. Gp 
satisfies (Q0 to (Q4). These verifications are entirely routine: in each case it 
suffices to calculate the expected number of pairs of subsets with the forbidden 
property, and show that this tends to 0 as n ~ ~ .  

(Q0 What is the expected number E of pairs (S, D) contradicting (QI)? The 
number of choices for S and D is at most (7)if), and the probability that a given 
vertex sends fewer than log log n edges to S is 

loglog n - 1 / ' ~ \  

tk)  Pk(1 -- P)'-k" 
k=O 

Therefore 

( ~ ) s ( ~ ) d [  ( 2esp \,oglog, ]d 
_-< ) 

= ( e a U 2 1 0 g n ~ s (  ectlogn )2,/~,,, 

\log log log n / \ 2  log log log n 

× [log log n (2eal/2) l°g log "e - "'' log log, ] 2~/,,,, 

--exp s l o g l o g n ( l + o ( l ) ) + ~ - ~ l o g l o g n ( l + o ( 1 ) )  

2 
loglognlog(2ea'/2)(1 + o(1) ) -  2 log log n]~ + ~1:--5 J J  

I [' =exp 2sloglogn ~ ( 1  

- -~0  a s  n --* ~ .  

+ log(2eal/2)) - 1] (1 

Therefore a.e. Gp contains no such pair. 

+ o(1))} 
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(Q2) For fixed u, what is Eu, the expected number of pairs (U, V) with 
] U I = u contradicting (Q2)? The number of choices for U and V is at most 

n); 
we can choose the u log log n edge from U to V in 

¼u2 log log n 

Si~iUgd/ 
ways, and the probability that all these edges are in G v is pU~OglOg,. Therefore 

E < ( n ) (  n )(¼u21°gl°gnlp~,O,,Og. 
u ¼uloglogn \ u l o g l o g n /  

< (en).( 4en ~uloglogn (e_~)loglogn 
= \ U /  \ u l ~ o g n /  

~ F , ;  

F, ,_  (e_~)( 4en tlloglog n (7)l°gl°gn( 1 )(~--~-lt°'~°' ') 
F-~--1 U 10g log n/ 1 + u -- 1 

,o, lo_ , (4e ) 
-<_ exp log + n log 

4 \u  log log n 

< 1  

• [eua log n loglog n] _ log n t + log log n,og t ; ~i-o~o~;~ ) ~log 

if ¼log( 4en / " , / 4n log log logn  ! 
< log . . . . . . .  

\u log log n/ \eu~ log n log log n/' 

n/(log n) 2 n 
E.<=-------~2 F, 

. = l (log 

< en I ( 4en ]llo,'og,(ealognloglogn]log'o, , 

= ~ \10g 1-00g n/ \ 4n ~og 1--0~g log n- / 

~ 0  a s n  ~ o o .  

Hence almost no Gp contains such a pair (U, V). 

which holds i fu  < n/(log n) 2. So the expected number of pairs (U, IO with the 
given properties is 
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(Q3) The argument here is the same as for (Q2), and we omit some details. 
For fixed u, the expected number of such pairs is at most 

n 
(~)(½ulogloglogn)(.½u2.! °glOglOgn) p~,OglOS~ 

\ u log log n 

- (eualogn)~lo~Log. 
__< (~)~lo,,og,og~ \ 2n 

G , ,  

G I t  -- I 

-~Gu; 

_ _  (en~m°g~"g~°g~ (eu°~l°gn~m°s~°s" (1 + 
: 

1 
I 1)(u-lX21°gl°gl°gn-loglog n) 

U - -  

which is less than 1 if 

n log log log n 
U < 

log n log log n 

So the expected number of pairs (U, V) is at most 

n log log log n 

log n log log n 
Gi = exp(log n(1 + 0(1)) + ½ log log log n log n(1 + 0(1)) 

- -  log log n log n(1 + 0 ( 1 ) ) }  

which tends to 0 as n ~ o0. 

(Q,) The expected number of such pairs (Y, Z).is at most 

( ; )  ( ; ) ( 1 -  P)Y~ < (l°g n)2n:'ogn(e~)n/~e -n/2 

---0 as n---- ~ .  

This completes the proof. [] 

We next prove that, if (pn log log log n)/(log n log log n) is bounded above, 
the t(Gp) is almost surely at least en 2, for some e > 0. In fact, we prove a 
somewhat stronger result, which shows that t(G)> en 2 for other classes of 
graphs G, with about the same number of edges, which are far from random. 

THV.OR~.~ 3. Let e > O, al, a2, b > 0 be foced constants• Suppose (for conve- 
nience) that b(a~ + a2) =>- 1. Suppose that I G I = n, and that there is a subset 
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Y o f  V(G) with order > en such that A(G[ Y]) < log n (log log n) al, and further- 

more there is a partition o f  Y into 

b log n 
s _  < 

log log log n 

classes Z~, Z2 . . . . .  Zs such that, for each k, no component o f  G[Zk] has order 
greater than (log log n )a2. Then 

~2 
t(G) > n 2 + o(n2). 

2b2(at + a2) ~ 

Here G [Z], for Z c_ V(G), denotes the induced subgraph of G with vertex set 

Z, and A(H) denotes the maximal degree of a graph H. 

Before proving Theorem 3, let us see how it can be used. First we note some 

simpler conditions implying the conditions of Theorem 3. 

THEOREM 4. Suppose I G I  = n ,  e ( G ) < n l o g n ( l o g l o g n )  c,, and z(G), 

the chromatic number o f  G, is at most (c2 log n)/(log log log n ), where ct and c2 
are constants with ClC2 > 1. Let r 1 be any positive real number. Then 

t (G)  >= (1 - q) n 2 , 
2c2c~ 

provided n is sufficiently large. 

PROOF. At most qn/4 vertices of G have degree greater than 
log n(log log n) c,(l÷È/4), for n sufficiently large. Let Y be the set obtained by 
deleting these vertices from V(G). Take a colouring of G[Y] using 

c2 log n 
s < 

log log log n 

colours, and call the colour classes Z t , . . . ,  Z,. Then G, Y, (Z~) satisfy the 

conditions of Theorem 3 with e = 1 - r//4, at = ct(1 + q/4), a2 = 0, and b = c2. 

Hence the result follows. [] 

THEOREM 5. Let c > 1 be a constant, and suppose that 

c log n log logn p <  
n log log log n 

Then for a.e. Gp, 
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(1 --6)  
t(G~) > n 2, for  any 6 > O. 

= 2c 2 

PROOF. Certainly almost every Gp has at most n log n log log n edges, and 
by a result of  Bollob~s and Thomason [10] (see Chapter XI, Theorem 25, of  

Bollob~s [5]), z(Gp) is almost surely less than ((l + 6/3)c log n)/(log log log n). 

Hence, by Theorem 4 with cl = l, c2 = (1 + 6/3)c and r /=  6/3, we have 

(1 - 6 )  
t(Gp) > - -  n 2, 

~- 2c 2 

almost surely, as required. [] 

Theorem 4 says that, if the chromatic number of G is small, then 
t(G)>-_ en 2. For random graphs, z(Gp) is amost surely small enough, if 

(pn log log log n)/(log n log log n) is bounded. If we are to produce graphs G 

with (cn log n log log n)/(log log log n) edges such that t(G) = o(n2), we have 
to increase the chromatic number. One way to artificially increase z(G) is to 

partition our n- set into sets of  (c log n log log n)/(log log log n) vertices, let 

each set span a complete graph, and add the edges of a random G,.p, with 

c log n log log n 
p -  

n log log log n 

Denote the resulting random graph Hp. In fact, Theorem 3 implies that, in this 
case also, we almost surely have t(Hp) >= en 2. 

We merely sketch the proof of this assertion. The random part of  the 
graph almost surely has chromatic number at most (2c log n)/(log log log n), 
and what is more we can take the colour classes each to have order at most 

(n log log log n)/(c log n). Consider the various intersections of colour classes 

with complete graphs. Almost surely none of these intersections contains as 
many as log n vertices, and at most n/(log n) 2 of them contain as many as 

(log log n) 2. Hence, by deleting at most n/log n vertices, we obtain a subset Yof 

V(G), and subsets (Zi) (the colour classes) satisfying the conditions of 

Theorem 3 with a~ = l, b = 2c, and a2 = 2. Therefore t(Hp) is almost surely at 

least e n  2, for some e > 0. 

To find a graph with (cn log n log log n)/(log log log n) edges and t(G) = 
o ( n 2 ) ,  w e  seem to need a graph with high chromatic number and yet good 

"spreading" properties. 
Having seen how Theorem 3 can be applied, let us prove it. 
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P R O O F  OF T H E O R E M  3. 

1/(al + a2 + 8), and 

Let ~ be any positive constant, and set b0 = 

bo log n 
S 0 - -  

log log log n " 

Without loss of  generality the So largest Zi's are Zt . . . .  , Zso. Let Y0-- t-3~ ° Zi, 

and note that 

[ Yo [ > ebo = - - n .  
b 

We give each class Z~ (1 £ i _-< So) a fixed ordering < i of  its vertices, and 
consider orderings of  V(G) of the following form. Those vertices not in Y0 are 

put at the top; the classes Z~ . . . . .  Zs0 are taken in some order, and then the Z~ 

are placed in that order below V(G)\Yo, the vertices of  Z~ appearing in the 

given order < ,. We claim that, in one of  the s0! orderings < of  this form, there 

are o(n 2) relations in < [r0. What is more, if each permutation of Z~ . . . . .  Z,o 

is given equal probability, we claim that the expected number of  relations in 

< [ r0 is at most n 2-~n(a,+a2+~l. 

Which paths in G[Y0] can be chains in such an ordering < ? The only 

possibilities are those paths of  the form X l I ' ' ' X l j , X 2 1 ' ' ' X 2 j 2 " ' ' X k l  "" °XkA , 

where x , .  • .xa, is a chain in some (Z/,; < t,) for every i, and k _-< So. Call such a 

path a k-step candidate path. Call two candidate paths equivalent if they have 

the same x~,x~j,,x2~,x2j~,.. .  ,xk~, Xkj,. (Thus equivalent paths differ only 
inside each Zg.) Clearly a candidate path P is a chain in < iff every path 

equivalent to P is a chain in < iff every path equivalent to P is a chain in < .  

Therefore, if we are to count relations in < [,'0, we need only count once for 
each equivalence class. 

How many equivalence classes of k-step candidate paths are there? We have 

] Y0[ choices for xt~. Given xi~, we choose xa,, from the < ( l o g l o g n )  a2 
vertices in the same component of G[Z~,] as x~. Given xa,, we choose x,+~,~ 

from the neighbours of xa, in Y0, and there are at most log n(log log n) ~, of 
these. Therefore the number of  equivalence classes of k-step candidate paths is 

at most 

] Y0 ] (log log n)ka2[Iog n(log log n)a'] k -  1. 

The probability that a given k-step candidate path is a chain in < is just 

l/k!, the probability that the k classes Z~,, . . . .  Zt, are in the right order in < .  

Therefore the expected number of relations in < ] Yo is at most 
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I Yol( logn( loglogn)~ '+a2)k~ 
k - I  

< ebo bo log n 

b log log logn 
(ebo log log log n (log log n ) a, + a2) b 0 Io8 n/log Io81o8 n 

=exp{log(-eb21°g-n  n ) + l o g n  
\b log log log 

+ log n 

(a~ + as + d)log log log n 
((a~ + a2)log log log n + log(eb0 log log log n))} 

a~ + a 2 +  
I 

n 2 - ]61(a I + a 2 + ~ ) .  

Therefore the expected value of r(G; < ) is at most 

( ~ ) _ (  I Y° l ) + n2-a/s(a' 

and so 

t(G) > e2b~ n 2 + o(n 2) = 
2b 2 

8 2 

2b2(al + as + ~)s ns + °(n2)" 

Since ~ was arbitrary, 

t(G) > n s + o(n2), 
2b2(al + a2) 2 

as required. [] 

Let us now see that, if we restrict the number of edges of G somewhat further 
than we do in Theorem 5, then every G has t(G) > en s. Using a somewhat 
different technique, Alon, Azar, and Vishkin [4] have proved the same result 
(with a worse constant). 

THEOREM 6. Let c be a constant, and suppose that I G I = n and e(G) < 
½cn log n. I f  n is sufficiently large, then 
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To prove instead that, say, 

is fairly simple. We first remove all vertices (at most n /2 )  of  degree ~ 2c log n. 

Then we take a random ordering -< of  the remaining vertices, and calculate 

the expected number  of  chains which span at most ~n vertices (i.e. the expected 

number  of  chains xl .  • .xk with at most  ~n vertices between xl and xk in < ), 

where ~ = 1/8c. This is easily seen to be o(n2). The proof  of  Theorem 6 is a 

refinement of  this proof. We omit  the arithmetical details. 

PROOF. Given a graph G with I G ] = n, and e ( G )  <= ½cn log n, we define 

inductively a sequence (Gr) of  induced subgraphs of  G as follows. Set GL -- G. 

Suppose that Gr has n - r + 1 vertices and ½Cr(n - r + 1)log(n - r + 1) edges. 

I f  Gr has a vertex of  degree > (~cr + 7)log(n - r + 1), form Gr+l by deleting 

any such vertex. In this case, set 

2e(Gr+O 
Cr+ 1 

(n - r)log(n - r)" 

So G,÷~ has n - r vertices and ½c~(n - r)log(n - r) edges. If, on the other hand, 

/ 
A(G~) < \ 2  4 / log (n  - r + 1), 

stop the process. 

Let Go be the final graph G,, set no = I G01,  and define co by e ( G o ) =  

½Cono log no. We shall prove that 

and therefore 

.G)> 2__z__/ 
=- \3c + 51 ' 

since we can put the vertices of  G \ Go at the top of  the ordering. 

It is straightforward to check that, provided n - r > e 6c,, we have 

c , + i + 5  > ( n  - r +  1) 2 

and thus, for every r < n - e 6c ,  
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,,, r, (3cr? 
In particular, we see that no is a t  least n(5/(3c + 5)) '/2, and  so, provided n is 

sufficiently large, 

2 2 

We now show that, provided no is sufficiently large, 

t(Go) >= no 

We recall that 

Set 

and note that 

{3Co 7) 
A(Go) -~ ~--2-- + 4 log no. 

e = -t- , 

e(3Co+71 1 
\ T  4 / < 1  30c + 36 

The number  of  paths of  length k in Go is at most  no[(~c0 + 7)log n0] k. I f  we take a 

random ordering < of  the vertices of  Go, with each ordering equally likely, the 

probabil i ty that the vertices of  a given path L = XtX2"''Xk+~ of  length k 
appear  in the order given by L,  and are all no more than eno higher than xl (i.e. 

xt < x2 < • ' • < x,+~, and there are at most eno - 1 vertices y with xt < Y < 

Xk+O is at most  ek/k!. Hence the expected number  of  chains of  length k in 

(Go; < ) spanning at most  eno vertices is at most  

k 1 log no - - .  
no + log no ek/k! < no 1 30c + 36 k! 

This expression is maximised when 

( i t  k =  1 3 0 c + 3 6  log no, 
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and it is less than 1 when k _-_ 4 log no. Therefore the expected number of 

chains in (Go; < ) spanning at most eno vertices is at most 

no 1 log no - -  
k=~ 30C + 36 k! 

I ( ' )  1 <= eno + 4 log no no exp 1 - log no 
30c + 36 

no 2-(30c+37)-x, 

for sufficently large no. 
In (Go; < ), there are en~ - ½e2n 2 pairs of  vertices at most eno apart in < and, 

in some ordering < ,  at m o s t  r/o 2-(30c+37)-' of these pairs are related in P(Go; < ). 

Hence 

t(Go) _>- 8n 2 - 7~l"2~2tto - F/2-(30c + 37)-'. 

It is straightforward to check that 

2 
8 -- ½8 2 > - -  

3Co+ 5 ' 

and hence 

This completes the proof. [] 

If G is close to regular, the expected number of relations missing in a 
randomly chosen ordering < is almost exactly n2(1/c - 1/2c2), so Theorem 6 

is almost the best result that any such "averaging" argument can give. 
However, the method involved is still fairly crude, and we make no attempt to 

choose a "good" ordering, beyond putting all vertices of high degree at the top. 

For small c, one can prove a stronger result: if G is a graph with n vertices 
and fewer than ½cnlogn edges, then t(G)>= ½n2(1 -c /2 )2 (1 -e ) ,  for any 

positive e and n sufficiently large. 

Theorem 5 implies (see Chapter II, Theorem 2 of Bollob~s [5]) that almost  

every graph G with n vertices and at most (cn log n log log n)/(log log log n) 

edges has t (G)  >= 6(c)n  2. Theorem 6 says that every graph G with n vertices and 

at most cn log n edges has t (G)  > e(c)n 2. This suggests the following question. 

Is there a function o)(n) -- oo such that every G with n vertices and at most 
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to(n)n log n edges has t(G) >= en 2, for some fixed positive e? Theorem 1 implies 
that such a function tn(n) must be such that (og(n) log log log n)/(log log n) is 
bounded• We conjecture that there is such an oJ(n), and furthermore that we 
can take 

c log log n 
o ~ ( n )  - 

log log log n 

CONJECTURE. Every graph with n vertices and at most 

(cn log n log log n)/(log log log n) 

edges has t ( G ) >= 3(c)n ~, for some O ( c ) > O. 
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