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ABSTRACT

Given a graph G on.n vertices and a total ordering < of V(G), the transitive
orientation of G associated with < , denoted P(G; <), is the partial order on
V(G) defined by setting x < yin P(G; < ) if thereis a path x = x;x;- -+ x, =y
in G such that x; < x; for 1 £i <j =r. We investigate graphs G such that
every transitive orientation of G contains () — o(n?) relations. We prove that
almost every G, , satisfies this requirement if

pnlogloglog n
fog nloglogn

)

but almost no G, , satisfies the condition if (pn log log log n)/(log  log log 1)
is bounded. We also show that every graph G with r vertices and at most
cnlog n edges has some transitive orientation with fewer than (§) — d(c)n?
relations.

The following sorting problem was proposed by Rabin (see [7]). Given n
objects in some total order unknown to us, we wish to ask a set of questions, all
at once, such that no matter what answers we get we can deduce all but o(n?) of
the () relations. How many questions will suffice? Here a question or probeis a
pair (a, b) of objects, and the answer reveals whether a <bor b <a.

As the probes have to be made simultaneously, these probes form a graph on
the set of objects. Thus our problem can be reformulated as follows. Given a
graph G = (V,E) of order n = | G | and size e(G), say, consider an acyclic
orientation of the edges. Let G = (V, E) be the directed graph obtained in this
way and let C(G) be the acyclic closure of G: xyis an arc of C(G) if G contains a
directed path from x to y. As every acyclic orientation of G is induced by a
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total order on V, we may assume that E is induced by a total order < on V.
The arcs of C(G) define a partial order P(G; < ), we call P(G; < ) the transitive
orientation of G associated with <.

We are interested in graphs G such that every transitive orientation of G
contains many relations. Let 7(G; <) denote the number of relations in
P(G; <), and let t(G) = max{(}) — r(G; <)}, the maximum number of rela-
tions of < notin P(G; < ). Obviously if {(G) = 0, then G = K,,. In this paper,
we are looking for graphs G, of order n and small size e(G,) such that
t(G,) = o(n?. Problems of this type have been studied by Bollobas and
Rosenfeld [8], Haggkvist and Hell [11, 12, 13], Ajtai, Komlés and Szemerédi
[2, 3], Bollobas and Thomason [9], and others, see Bollobas and Hell [7] and
Bollobas [5].

After we had submitted this paper, we became aware of papers by Ajtai,
Komlds, Steiger and Szemerédi [1], and by Alon, Azar and Vishkin [4] dealing
with the same questions as the present paper. In both these papers results are
obtained (Theorem 2 of [1] and Proposition 3.5(1) of {4]) which are essentially
the same as Theorem 6 and the remark after. Also, both sets of authors prove
results (Theorem 1 of [1] and Proposition 3.5(ii) of {4]) which are improved by
our Theorem 1, to the extent that our result happens to disprove the Conjec-
ture in [1]. The present authors are currently working on a paper [6] dealing
with the general question of how small t(G) can be for graphs G with n vertices
and pn?%2 edges, throughout the range of p = p(n).

Before embarking on the results, we recall the concept of a random graph.
Let G, ,=G, denote a random graph on n vertices, with each pair of vertices
joined by an edge with probability p = p(n), each pair considered indepen-
dently. We say that a/most every (a.e.) G, has property Q, or that Q holds
almost surely, if the probability that G, , has Q tends to 1 as n — oo. For the
general theory of random graphs, the reader is referred to Bollobas [5].

In this paper we prove that, if

__w(n)log nloglog n

, where w(n)-> oo as n —~ oo,
nlogloglog n

then 1(G, ,) = o(n?) for almost every G, ,; whereas if

clognloglogn

IIA

P ,  where cis a constant,

nloglog log n

then, for some J=4(c)>0, «G,,)=dn* for almost every G,,.
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This latter result implies that, for every constant ¢, there is a constant
d = d(c)> 0 such that almost every graph G with n vertices and at most
(cn log n log log n)/(log log log n) edges has ¢(G) = dn*. We also show that, for
every ¢, there is an ¢ = ¢(c) > 0 such that every graph G with n vertices and
=< cnlog n edges has t(G) = en’.

Our first result is as follows.

THEOREM 1. Suppose

n)log nlog 1
D ;a( )l gln c;g ogn’ where 64 = a(n) <loglog n.
nlogloglog n

Then a.e. G, is such that t(G,) = 4n*/a"*.
For a(n)— oo, this tells us that, if
pnlog log log n
log n log log n

then #(G,) is almost surely o(n?). For a > 64 a fixed constant, we interpret the
theorem as saying that, if we want P(G; <) to contain at least en” relations
(e > 0) for every transitive orientation < of G (i.e. {(G) = (§) — en?), then a.e.
G, will do, for

alog nloglog n

v

P== logloglogn
As mentioned earlier, weaker versions of Theorem 1 have been proved by
Ajtai, Komlos, Steiger and Szemerédi [1], and by Alon, Azar and Vishkin [4].
Essentially, both sets of authors prove that, if
w(n)log nloglogn

b

v

p
n

and w(n)— o, then a.e. G, is such that #(G,) = o(n?). In fact, Ajtai, Komios,
Steiger and Szemerédi conjecture that their result is best possible, which
Theorem 1 shows to be false. The significance of our additional factor of
log log log n is that, at any rate for random graphs, it is best possible, as we shall
see in Theorem 5.

The proof of Theorem 1 divides into two parts: first we prove that, for n
sufficiently large, every graph G on n vertices satisfying the properties (Q,) to
(Q,) below has 1(G) =< 4n?/a"?; then we show that a.e. G, satisfies (Q;) to (Qy).
Let then (Q,) to (Q,) be the following properties of graphs of order n.
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(Q,) There is no pair (S, D) of disjoint subsets of V(G) such that

=nlogloglogn, D ___dzév_:anogloglogn

S| =s
151 o' logn o''? alogn

and each vertex of D sends fewer than log log n edges to S.

(Q,) There is no pair (U, V) of disjoint subsets of V(G) such that | U | =
u=nl/(logn)?, | V| =4uloglogn, and e(U, V) > uloglog n.
(Q5) There is no pair (U, V) of disjoint subsets of V(G) such that
nlogloglogn
|U| =usx nlopog 0N
log nloglog n

| V| =4ulogloglogn, and e(U, V)>uloglog n.
(Q,) There is no pair (Y, Z) of disjoint subsets of V(G) such that

nlogloglog n
|V | =y ===,
log n log log n
| Z | =z =nla, and there are no Y — Z edges.

Here and throughout, we omit integrality signs, which do not affect the
argument. For subsets X and Y of V(G), e(X, Y) denotes the number of edges
between them. All the properties (Q,) express the idea that large sets of vertices
have about the ‘right’ number of edges between them.

THEOREM 2. If G is any graph on n vertices, with n sufficiently large,
satisfying (Q)) to (Q,), then t(G) = 4n*/a'".

ProOF. Let G be a graph on 7 vertices satisfying (Q,) to ((,), and take any

total ordering < of V(G). We are required to prove that, provided # is
sufficiently large,

"G <) 2 (;) — 4n¥a',

We may assume without loss of generality that V[G]=[n]=(L1,2,...,n},
and that < is the standard order on [n].
Let

__alogn
2logloglogn

We assume for convenience that / is an integer dividing #; it is clear that this
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does not affect the argument. For i =1,2,...,/, define
A,-={mEN:%(i— <m g%}»

The A; are disjoint sets of vertices of size

2nlogloglog n

n
l a'?log n

satisfying 4; < 4, for i <j. We now define inductively, for each k, a subset B,
of A, as follows. Set B, = A,. Given B, C 4, with

| B, | >2nlogloglogn<1 _L)>nlogloglogn
a

al/2 log n 172 al/2 lOg n

let C, . be the set of vertices in A4, ., sending fewer than log log » edges to B,.
Since G satisfies (Q,),

2nlogloglog n
| Gt | <=2,
alogn

Now set By, = A+, \ Ci+1- We have defined sets B, such that

2nlogloglogn<1 1 >

B | > —
| Bel a'?log n

s
al/Z

and each vertex of B, ., sends at least log log »n edges to B,, for all k.

There are at most n/a'? vertices not in UB,. We claim that, for every vertex
xin UB,, there are fewer than 3n/a'? vertices below x which are in UB, and
are not <x in P(G; <). This will imply that

4 2
r(G;<)§<n)—%-n ——n'3—n=(n>—i
[44

2 a'? b) al? ’

as desired.
Fix k and any vertex x in B,. We may assume that

k= Jlogn ’
2logloglogn

since otherwise there are fewer than 3n/a'? vertices below x in UB,. For
0 =j <k, we define

D;={y€EB;_;y =xin P(G; <)}.
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We claim that | D, | always grows at essentially the expected rate.
For

IA

) logn —2loglogn
f .}OE s

log loglog n —log 4

we claim that | D; | = (;loglog n). Indeed, this s true for j = 0. Suppose it is
true forj — 1,sothat | D;_, | =(;loglog n)y ~'. Take any subset E;_, of D;_,
with

| E;_, | =(loglog ny ™' = n/(log n)>.

There are at least (§loglog n)~'loglog n edges from E;_, to B,_; , since
E;_,C B,_;., and so, since G satisfies (Q,), E;_, has at least (3log log n)’
neighbours in B _;, and these are all in D,. Therefore | D; | = (;loglog nY,as
claimed. In particular, we have that | D, | = n/(log n). From this point on,
we must make do with the slower rate of growth given by (Q;). Repeating the
above argument using (@) in place of (Q,), we see that, for j, <j <j, +Ji,
where

. [’log log n + log log log log n — log log log n]
h= s
log log log log n — log 2

we have | D; | = n/(log n)*(}log log log ny .

In particular, we have
n log log log n
“lognloglogn’

l Joti |

This is now large enough so that almost every vertex below D; . ; sends an edge
to D, . ;. Indeed, since G satisfies (Q,), at most n/a vertices of G fail to send an

edge to D, ;. Hence

. . . 2nloglogl
| (p€ UB,y <x, y£x in P(G; <)} | ST+ (o+Jjys + 1) ——p 0B 08N
a a'?logn

<L(_1_+§+(loglogn)z>
T a2 \g!? ) log n

3n .
=—, fornsufficiently large.
44

This completes the proof of Theorem 2. O
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Theorem 2 goes some way towards finding graphs G, of order n and small
size satisfying 1(G,) = o(n?): all we have to do is find G,’s satisfying (Q,) to
(Q,). Nevertheless such graphs G, are not easily constructed. To complete the
proof of Theorem 1, we show that, in a certain range of p(n), most random
graphs G, , have the properties.

PROOF OF THEOREM 1. By Theorem 2, all we have to show is that a.e. G,
satisfies (Q)) to (Q,). These verifications are entirely routine: in each case it
suffices to calculate the expected number of pairs of subsets with the forbidden
property, and show that this tends to 0 as n — «c.

(Q,) What is the expected number E of pairs (S, D) contradicting (Q,)? The
number of choices for S and D is at most (' )(}), and the probability that a given
vertex sends fewer than log log n edges to S is

loglogn—1 s
5 () ra—or
k=0 \K

(OO (-]
(w22

< eal/Z lOg n )5( ea lOg n )Zs/allz
log loglog n/ \2 logloglog n

X [log log n (2eal/2)log log ne= a'?log log n ] 2s/al?

Therefore

E

IA

A

2
= exp {s [log log n(1 + o(1)) + —-ﬁlog log n(1 + o(1))
a

2
+ — log log n log(2ea'?)(1 + o(1)) — 2 log log n]}

l/2

= exp {2s loglog n [% (1 + log(2ea'?)) — 1] (+ 0(1))}

-0 as n — .

Therefore a.e. G, contains no such pair.
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(Q,) For fixed u, what is E,, the expected number of pairs (U, V) with
| U| = u contradicting (Q,)? The number of choices for U and V' is at most

(2) (G tog g )
u/ \Juloglogn/’

we can choose the u log log n edge from Uto Vin

<;‘;u2 log log n)
uloglogn

ways, and the probability that all these edges are in G, is p*'*¢'¢". Therefore

<n>< n > (J;u2 log log n) wloglog
\ D
u/ \suloglogn/ \ uloglogn

(en> u( 4en )iu log log n (eup> log log n
u/ \uloglogn 4

E,

IA

IIA

F,;

( i >(u—1x1—%1oglogn)

F, (en>< 4en >floglogn (eup)loglogn L4
F, - u/\uloglogn 4

u—1

en\ loglogn 4en
=expilogl—1+ log
u 4 uloglogn

eualog nloglog n\ |
—iloglogn
4nlogloglog n

( 4nlog log log n )
eualog nloglogn/’

+ log log n log <

<1 if%log( )
uloglogn

which holds if u = n/(log n) So the expected number of pairs (U, V) with the

given properties is

n/(log n)? n
E = F,
u=1 (log n)?
__en ( 4en )5108 log n (ea log nlog log n)los log n
~ (log n)2 \log log n 4nlogloglog n

-0 asn— oo.

Hence almost no G, contains such a pair (U, V).
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(Q;) The argument here is the same as for (Q,), and we omit some details.
For fixed u, the expected number of such pairs is at most

(n)( n )(%uz log log log n) e
pu og log n
u/ \Julogloglog n uloglogn

1
3u log log log uloglog n
- (ﬂ)z n (eua log n)

u 2n
=G,
G, _ (en)i’%loslos" (eua log n)'oslos" (1 + 1 )("—l)(ilosloslogn—loslosn)
G,_, u 2n u—1
which is less than 1 if
y < nlogloglogn ’
log nloglog n

So the expected number of pairs (U, V) is at most

log log |
MG, = exp{log n(1 + o(1)) + }log log log n log n(1 + o(1))
log n log log n
—loglog nlog n(1 + o(1))}
which tends to 0 as n — co.

(Q,) The expected number of such pairs (¥, Z).is at most
<n> <n> (l _ p)yz < (IOg n)2nllogn(ea)n/ae—-n/2
y/\z

-0 asn—> oo.
This completes the proof. g

We next prove that, if (pn log log log n)/(log n log log n) is bounded above,
the #(G,) is almost surely at least en?, for some ¢ > 0. In fact, we prove a
somewhat stronger result, which shows that {(G)> en? for other classes of
graphs G, with about the same number of edges, which are far from random.

THEOREM 3. Lete >0, a,, a,, b = 0 be fixed constants. Suppose (for conve-
nience) that b(a, + a,) = 1. Suppose that | G | = n, and that there is a subset



Vol. 59, 1987 GRAPHS 121

Y of V(G) with order = en such that A(G[Y)) = log n(log log n)*, and further-
more there is a partition of Y into

blogn
SsE——————
log log log #
classes Z,, Z,, . . . , Z, such that, for each k, no component of G[Z,] has order
greater than (log log n)%. Then
62
HG)z ———n*+o(n?).

2b2(a1 + a2)2

Here G[Z], for Z C V(G), denotes the induced subgraph of G with vertex set
Z, and A(H) denotes the maximal degree of a graph H.

Before proving Theorem 3, let us see how it can be used. First we note some
simpler conditions implying the conditions of Theorem 3.

THEOREM 4. Suppose | G| =n, e(G)=nlogn(loglogn)", and x(G),
the chromatic number of G, is at most (c, log n)/(log log log n), where ¢, and c,
are constants with ¢,c, = 1. Let n be any positive real number. Then

(1—n)

tHGyz——n?,
) 2cic?

provided n is sufficiently large.

ProoF. At most nn/4 vertices of G have degree greater than
log n(log log n)«*"%_ for n sufficiently large. Let Y be the set obtained by
deleting these vertices from V(G). Take a colouring of G[Y] using

clogn
S§E—
log log log n
colours, and call the colour classes Z,, ..., Z,. Then G, Y, (Z,) satisfy the
conditions of Theorem 3 withe = 1 — #/4, a, = ¢,(1 + n/4),a,=0,and b = ¢,.
Hence the result follows. 0

THEOREM 5. Let ¢ = 1 be a constant, and suppose that

clog nlog logn

I

F nlogloglogn

Then for a.e. G,
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1-96
t(G)>(22)n2, for any 6 > 0.

Proor. Certainly almost every G, has at most n log n log log n edges, and
by a result of Bollobas and Thomason [10] (see Chapter XI, Theorem 2§, of
Bollobas [5)]), x(G,) is almost surely less than ((1 + 6/3)c log n)/(log log log n).
Hence, by Theorem 4 with ¢, = 1, ¢, = (1 + d/3)c and = d/3, we have

(1-9) ,

Gz~

almost surely, as required. O

Theorem 4 says that, if the chromatic number of G is small, then
t(G) z en®. For random graphs, x(G,) is amost surely small enough, if
(pn log log log n)/(log n log log n) is bounded. If we are to produce graphs G
with (cn log n log log n)/(log log log n) edges such that ¢(G) = o(n?), we have
to increase the chromatic number. One way to artificially increase x(G) is to
partition our n-set into sets of (clog » log log n)/(log log log n) vertices, let
each set span a complete graph, and add the edges of a random G, ,, with

_clognloglogn
nlogloglogn

Denote the resulting random graph H,. In fact, Theorem 3 implies that, in this
case also, we almost surely have {(H,) = en’.

We merely sketch the proof of this assertion. The random part of the
graph almost surely has chromatic number at most (2c log n)/(log log log n),
and what is more we can take the colour classes each to have order at most
(n log log log n)/(c log n). Consider the various intersections of colour classes
with complete graphs. Almost surely none of these intersections contains as
many as log n vertices, and at most n/(log n)* of them contain as many as
(log log n)?. Hence, by deleting at most n/log n vertices, we obtain a subset Y of
V(G), and subsets (Z;) (the colour classes) satisfying the conditions of
Theorem 3 with a, = 1, b = 2c, and a, = 2. Therefore ¢(H,) is almost surely at
least en?, for some ¢ > 0.

To find a graph with (cnlog n log log n)/(log log log n) edges and 1(G) =
o(n?), we seem to need a graph with high chromatic number and yet good
“spreading” properties.

Having seen how Theorem 3 can be applied, let us prove it.
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ProorF oF THEOREM 3. Let § be any positive constant, and set b, =
1/(a, + a, + 9), and

b, log n
Sp=—""".
log log log n
Without loss of generality the s, largest Z;’s are Z,, ..., Z,. Let Y, = Uy Z,
and note that
eb
| Yo | = —b—" n.

We give each class Z, (1 =i =s,) a fixed ordering < of its vertices, and
consider orderings of V(G) of the following form. Those vertices not in Y, are
put at the top; the classes Z,, . . ., Z, are taken in some order, and then the Z,
are placed in that order below V(G)\Y,, the vertices of Z; appearing in the
given order <,. We claim that, in one of the s,! orderings < of this form, there
are o(n?) relations in < |y,. What is more, if each permutation of Z,, ..., Z,
is given equal probability, we claim that the expected number of relations in
< |y, is at most p2~¥@+a+d),

Which paths in G[Y,] can be chains in such an ordering < ? The only
possibilities are those paths of the form x;;- - -x);x0 ¢ « =Xy, « <X+ = Xy
where x;, - - - x; is a chain in some (Z,; <,) for every i, and k = s,. Call such a
path a k-step candidate path. Call two candidate paths equivalent if they have
the same Xy, Xy;, X321, Xap, - - - > Xit, Xi. (Thus equivalent paths differ only
inside each Z;.) Clearly a candidate path P is a chain in < iff every path
equivalent to Pis a chain in < iff every path equivalent to Pis a chain in <.
Therefore, if we are to count relations in < |, we need only count once for
each equivalence class.

How many equivalence classes of k-step candidate paths are there? We have

| Yo | choices for x;. Given x;,, we choose x;, from the = (loglogn)*
vertices in the same component of G[Z,] as x;,. Given Xx;;, we choose X,
from the neighbours of x;; in Y;, and there are at most log n(log log n)* of
these. Therefore the number of equivalence classes of k-step candidate paths is
at most

| Yo | (log log n)*flog n(log log n)4]*~".

The probability that a given k-step candidate path is a chain in < is just
1/k!, the probability that the k classes Z,, . . ., Z, are in the right orderin <.
Therefore the expected number of relations in < |, is at most



124 B. BOLLOBAS AND G. BRIGHTWELL Isr. J. Math.

S 1
2 | Yy | (log n(log log n)®+a)yk —
k=t k!

b bl
ehy, _bologn

=

~ b logloglogn

ebtlogn
=expjlog|———— | +logn
blogloglog n

(eby log log log n(log log n ) +4:)blos n/logloglog n

log n
(a, + a, + d)log log log n

0
= exp 5 lo n<2—-————-—>+ 1 }
p{ 8 a+a+é o(log )

< p2-ile+ay+3),

((a; + ay)log log log n + log(eb, log log log n))}

Therefore the expected value of r(G; <) is at most

(n) _( | Yo | >_+_ 2012, +ay+0).
2 2

and so

242 2
(G = E8 2 4 o(nt) = 2 .
b2 2b%a, + a, + 0)

n?+ o(n?).

Since J was arbitrary,

82
1(G) 2 ———— n>+ o(n?),
O @ ey T

as required. O

Let us now see that, if we restrict the number of edges of G somewhat further
than we do in Theorem 35, then every G has t(G) = ¢n®. Using a somewhat
different technique, Alon, Azar, and Vishkin [4] have proved the same result
(with a worse constant).

THEOREM 6. Let c be a constant, and suppose that | G | = nand e(G) =
ienlog n. If n is sufficiently large, then

&zr(-L).
"Gz 3c+5
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To prove instead that, say,

1 1
HG)z 2(—— )
()2 n 8¢ 128¢?

is fairly simple. We first remove all vertices (at most n/2) of degree = 2clog n.
Then we take a random ordering < of the remaining vertices, and calculate
the expected number of chains which span at most dn vertices (i.e. the expected
number of chains x, - - - x, with at most dn vertices between x, and x, in <),
where & = 1/8¢. This is easily seen to be o(n?). The proof of Theorem 6 is a
refinement of this proof. We omit the arithmetical details.

ProoF. Given a graph G with | G | = n, and e(G) = cnlog n, we define
inductively a sequence (G,) of induced subgraphs of G as follows. Set G, = G.
Suppose that G, has n — r + 1 vertices and ic,(n — r + 1)log(n — r + 1) edges.
If G, has a vertex of degree > (3¢, + Plog(n —r + 1), form G, by deleting
any such vertex. In this case, set

— 26(G,+1)
(n —r)logn —r)’

Cr+l
So G, has n — rvertices and ic,(n — r)log(n — r) edges. If, on the other hand,

3, 7
AG,) = (76 + Z) log(n — r + 1),

stop the process.
Let G, be the final graph G,, set ny= | Gy |, and define ¢, by e(Gp) =
deong log ny. We shall prove that

2
t(GO);né( >;n2< 2 ),
3cp+ 5 3¢ +5

2
G)=n?
Ha)zn <3c+5>’

and therefore

since we can put the vertices of G \ G, at the top of the ordering.
It is straightforward to check that, provided n — r = e%:, we have

(n—r)z( >>(n—r+1)2<

3c’+1+5 3Cr+5>,

and thus, for every r < n — e,
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=) (=),
3¢, .1+ 5 3¢c+5

In particular, we see that ny is at least n(5/(3¢ + 5))2, and so, provided n is

We now show that, provided #, is sufficiently large,

(G, gnz( )
(Go) 0 3c,+5

We recall that

Set

and note that

(3C0 7) l
e[ 24| <l - —nu.
2 4 30c + 36

The number of paths of length k in G, is at most ng[(3¢, + Dlog ng)*. If we take a
random ordering < of the vertices of G,, with each ordering equally likely, the
probability that the vertices of a given path L =x,X,- - - X, of length k
appear in the order given by L, and are all no more than &n, higher than x; (i.e.
X; < X3 < +++ < X4, and there are at most eny — 1 vertices y with x; <y <
X4 is at most e¥/k!. Hence the expected number of chains of length k in
(Gy; < ) spanning at most &n, vertices is at most

200 Dog ] st = {1~ 355 e 5
ECIAY et < nol (1 — ———— ) log | — .
""Kz 5) 08| BTSN\ E TR0 36) B

This expression is maximised when

k= ) log ng,

1
1______
( 30¢ + 36
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and it is less than 1 when k = 4 log n,. Therefore the expected number of
chains in (G,; < ) spanning at most gn, vertices is at most

sﬁ n [<1———1——>logn]kl
ko 30c + 36 ] Kt

1
= éeny + 4 log ny ny exp [(1 - m) log no]

- -1
éng (30c+37) ,

for sufficently large n,.

In (Gy, < ), there are en? — 1e2ng pairs of vertices at most engapartin < and,
in some ordering < , at most n3~ %37 of these pairs are related in P(Gy; < ).
Hence

t(GO) ; gné — %82’1& _ né—(30(‘+37)“‘

It is straightforward to check that

e — 12> ,
3¢+ 5

and hence

HG, ;nz( )
(Go) 0 3¢+ 5

This completes the proof. 0

If G is close to regular, the expected number of relations missing in a
randomly chosen ordering < is almost exactly n*(1/¢c — 1/2¢?), so Theorem 6
is almost the best result that any such “averaging” argument can give.
However, the method involved is still fairly crude, and we make no attempt to
choose a “good” ordering, beyond putting all vertices of high degree at the top.

For small ¢, one can prove a stronger result: if G is a graph with » vertices
and fewer than icnlogn edges, then ((G)= in*(1 —c/2)X(1 —¢), for any
positive ¢ and # sufficiently large.

Theorem 5 implies (see Chapter 11, Theorem 2 of Bollobas [5]) that almost
every graph G with n vertices and at most (cn log n log log n)/(log log log n)
edges has 1(G) = d(c)n>. Theorem 6 says that every graph G with n vertices and
at most cn log n edges has 1(G) = &(c)n”. This suggests the following question.
Is there a function w(n)— oo such that every G with n vertices and at most
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w(n)nlog n edges has t(G) = en?, for some fixed positive £¢? Theorem 1 implies
that such a function w(n) must be such that (w(n) log log log n)/(log log n) is
bounded. We conjecture that there is such an w(#n), and furthermore that we
can take

cloglogn
wn)=——""—""1.
log log log n

CoNJECTURE. Every graph with n vertices and at most
(cn log n log log n)/(log log log n)
edges has 1(G) = é(c)n?, for some 6(c)> 0.
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